首页> 外文OA文献 >Wavelet Shrinkage and Thresholding based Robust Classification for Brain Computer Interface
【2h】

Wavelet Shrinkage and Thresholding based Robust Classification for Brain Computer Interface

机译:基于小波收缩和阈值的脑稳健分类   计算机接口

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A macaque monkey is trained to perform two different kinds of tasks, memoryaided and visually aided. In each task, the monkey saccades to eight possibletarget locations. A classifier is proposed for direction decoding and taskdecoding based on local field potentials (LFP) collected from the prefrontalcortex. The LFP time-series data is modeled in a nonparametric regressionframework, as a function corrupted by Gaussian noise. It is shown that if thefunction belongs to Besov bodies, then using the proposed wavelet shrinkage andthresholding based classifier is robust and consistent. The classifier is thenapplied to the LFP data to achieve high decoding performance. The proposedclassifier is also quite general and can be applied for the classification ofother types of time-series data as well, not necessarily brain data.
机译:猕猴受过训练,可以执行两种不同的任务,即记忆辅助和视觉辅助。在每个任务中,猴子会扫视到八个可能的目标位置。提出了一种分类器,用于基于从前额叶皮层收集的局部场电势(LFP)进行方向解码和任务解码。 LFP时间序列数据在非参数回归框架中建模,该函数被高斯噪声破坏。结果表明,如果该函数属于Besov体,则基于小波收缩和阈值的分类器是鲁棒且一致的。然后将分类器应用于LFP数据以实现高解码性能。所提出的分类器也很笼统,并且可以应用于其他类型的时间序列数据的分类,不一定是大脑数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号